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Abstract

We investigate the compression of rubber blocks bonded to rigid metal plates for
several different geometries, namely for rectangular and V-shaped blocks. We obtain
reasonably simple solutions in series form relating the force and the displacement using
the ”pressure method” developed by Gent. Our initial assumption concerning the
incompressibility of the rubber is subsequently relaxed to ”"near incompressibility” to
yield more accurate solutions. We demonstrate a very good agreement between the
theoretical solutions and the results of linear finite element simulations.

Key words: elasticity, compression, incompressibility, near incompressibility, partial differ-
ential equations, finite element simulations

1 Introduction

In this note we examine the compression of rubber blocks bonded to rigid metal plates for
several specific geometries. Rigorous analysis of such components is nontrivial since the
solutions are complicated. However, for design purposes it is most desirable to produce
(if possible) reasonably simple closed form solutions for these geometries that provide a
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good approximation to the actual behavior of the components. A number of approximate
methods have been developed using simplifying assumptions such as incompressibility of the
rubber and linear elastic behavior. Here we adapt an approach developed by Gent, [2, 3, 4],
called the ”pressure method”. When a bonded block is compressed, the deformation can
be considered to take place in two stages: a simple homogeneous compression, (F}), which
is equivalent to compression between lubricated plates and subsequent shear deformations,
(Fy), that restore points in the planes of the bonded surfaces to their original positions.
Hence, assuming superposition, the compression force is given by F' = F; + F5. Solutions
derived from the pressure method approach have been quite successful and are often quoted
in rubber engineering design handbooks ([6]). As we described in [1], solutions using this
method give very good approximations to the compressive force in the case of rectangular and
annular blocks. As we shall demonstrate, the assumption of incompressibility can be relaxed
and a good agreement can be established between the resulting theoretical formulation and
the numerical finite element results for slightly compressible rectangular and annular blocks.

In this paper after a general introduction to the pressure method we revisit the case of a
rectangular bonded block and present in detail the results for the slightly compressible case.
Next we apply the pressure method to a V-shaped mount and extend the solutions to the
slightly compressible case. At the end of this note we present a comparison of theoretical
and finite element analysis predictions.

2 The pressure method

In this section we provide a brief introduction to the pressure method and present the general
strategy used in obtaining the governing equations for different geometries. Other descrip-
tions of the pressure method can be found in [2, 3, 4]. As stated in the introduction we use
the assumption that the shear modulus is constant (i.e., there is a linear relationship between
stress and strain) and thus our results apply for small strains. For small compressions the
load-deflection relation may be written as:

where A is the cross-sectional area, f(S) is the shape function, S = -tended area g ig Young's
? ? unbonded area’

modulus for the rubber and ¢ is the average compressive strain. The goal from the designer’s
point of view is to compute f(S) for different geometries. The deformation is considered to
occur in two stages: first there is a simple homogeneous compression and then subsequent
shear deformations restore points in the planes of the bonded surfaces to their original posi-
tions. We denote the compressive force resulting from the simple homogeneous compression
by Fj. The compressive stress, oy, for the first deformation is uniform and given by:

F
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when displacements occur equally in the z,y plane, or

F]_ Fe

— =01 = —7,
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where v is Poisson’s ratio, when the displacements are restricted to one direction (e.g., long
strip). For incompressible materials, v is 0.5 so that (1_1—,/2) = %. Then for % = Ef1(S)e,

f1(S) ranges from 1 to %.
An empirical form for the f;(S) term (see [3]) is:

4 2 ab+t?
3 3a?+0b2+2t%
where 2a,2b are sides of the rectangular cross-section or axes of the elliptic cross-section.

Note that this formula gives 1 when displacements occur equally in the x,y plane (i.e., square
block) and equals 3 for an infinite block.

fi(S) = (2.1)
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Figure 1: Forces on an element

According to Gent, under certain conditions, the stresses required to maintain the second
deformation can be deduced readily by analogy with Reynolds’ theory of thin lubricating
films of a viscous liquid. For relatively thin blocks the stresses are represented in the form
of a hydrostatic pressure P that is maximal in the center of the block and falls to zero at
the free surfaces. The governing relation for P can be derived for different geometries. To
illustrate the method we present the derivation of P in detail for a thin, bonded infinite
strip.



Consider static equilibrium of forces on the element in Figure 1 where P denotes the pressure
and o denotes the shear stress in the x, y plane:

dP do
il - 2.2
T drdydz 7 dzdzdy, (2.2)
and thus
dP do
= = 2.3
dx dz (2:3)
dP

Since the pressure is assumed constant through the thickness %~ is independent of z, which
implies that

d*o
— =0. 2.4
FE (2.4)
The shear stress, o, is given by
dk
=-G— 2.5

where k is the x-displacement of the volume element and G is the shear modulus of the
rubber (2(1—‘2,/))
From (2.4) it follows that

d*k

and
dP d’k

Equation (2.6) indicates that an initially plane cross section takes a parabolic shape in the
deformed state, with a profile given by:

LA (2_Z>2 (2.8)

km t
where k = 0 when z = £ and k = k,, when z = 0. Substituting (2.8) into (2.7) we obtain:

dP k

— = -8G—=. 2.9

dz 2 (2.9)
To find k,, we equate the volume of the bulge with the volume displaced by the compres-

sion of the block lying within the plane at = (see Figure 2). Only a unit length is considered

in the case of an infinite block.



X XEAX  y=2/3 K (t-0)=2/3 k

Figure 2: Volume of the bulge

The change in volume is given by
2
AV = gAkmt — etAz.

On the other hand,
AV P

v = K’
where K is the bulk modulus of the material. Thus
ﬂ 2 Akt etAx P

vV 3 Azt Azt K’
which yields
28k _ P
3Az ° K
dk,, 3 P
om0 e — ). 2.1
T 2(6 K) (2.10)

Note that if K = oo (incompressible material) then %= = 3z Combining (2.9) and (2.10)
we obtain
da’p G P

When deformation occurs in the y-direction as well we have

0?’P 9°P G p
o Ty T 2T R (212)



In objects with cylindrical symmetry we obtain

d>P 1dP G P

T T =12 (e - ). (2.13)
If incompressibility is assumed then the equation is the same with the term % removed (i.e.,
take K = 00). Once the pressure P is found, the corresponding compressive force can be
obtained by integration and f5(S) (the component of the shape function arising from the
second step of the deformation) can be determined. Thus for a long bonded strip the solution
of (2.11) with boundary conditions P = 0 at * = +w/2, and dP/dzx = 0 at = 0 yields

6Ge (w?
in the incompressible case. Thus
w/2 Gew?
F, = Pdx = ) 2.15
2 —w/2 v t2 ( )

For the long bonded strip the force per unit length associated with the simple, homogeneous
compression is given by

4
F = g Eew, (2.16)

where F is the Young’s modulus of the rubber. Thus,

FeF+F = tpew (142 (2.17)
=1 2—3 Ew 412 y .

w

and since the shape factor for the long bonded strip is S = g,

function is

we obtain that the shape

£(S) = §(1+S2).

As we noted in [1] Equation (2.12) is analogous to the equation governing the torsion of
a prism. Solutions of the torsion problem exist for many different geometries [7, 8, 9] and
can be used directly.

Historically, the general incompressible problem was solved by Gent and Meinecke in
1970 [3]. In 1994 Gent extended his solutions for the infinite strip (1-D) and the disk
(axis-symmetric geometry) to a compressible material [4]. The axis-symmetric solution was
generalized by Kelly to the annulus [5]. Our work extends the incompressible solution for
rectangular blocks to compressible material and uses this result to find solutions for V-
shaped rubber blocks. We also compare the theoretical results with numerical simulations
using finite element methods.



3 Rectangular blocks

In this section we review the compression of bonded rectangular blocks of length [, width
w and thickness ¢. In [1] we outlined the results for the incompressible and the slightly
compressible case; here we present the analysis in detail for the latter case. Results for
the former can be found in [1, 3], but we note that they are not expected to provide a
good approximation unless some compressibility correction is used especially when the shape
factor, .S, is large.

The compressive force Fj corresponding to the pure homogeneous deformation is given

by
T Bens)
where f1(5) is the empirical factor given by (2.1), with a = £/2, and b = w/2. The cross-
sectional area A is fw. As noted in [1] for blocks of moderate to large shape factors F; is
much smaller than F», so uncertainty in f;(.S) is usually not critical.

We derive the force F, by analogy to Reynolds’ squeeze film theory. In the slightly
compressible case the pressure satisfies the equation

o*’pP  O*P 12G P
= S 1
O0x? + 0y 12 (6 K)’ (3.18)
with boundary conditions
P=0 at z=+w/2, y==£/2, and (3.19)
oP oP
9 0, 9 0 at =y =0, (3.20)

where K is the bulk modulus of the rubber. Since the pressure is symmetric with respect to
the y-axis and P = 0 at © = +w/2 we propose to find a solution to (3.18) in the form

& nwx

P(z,y)= > ancos—Y,, (3.21)
n=1,35,... w
where a,, n = 1,3,5,... are constant coeflicients and Y7,Y3,... are functions of y only.
Substituting (3.21) into (3.18), formally we obtain
0o 2,2 0o
- Y ann 7; cos @Yn + > apcos @YT{'
n=1,3,5,... w w n=1,3,5,... w
12G 1 > nmwT
=——|le— = an COs —Y, 3.22
t2 ( K n:l,z3,5,... " w n) , ( )

which yields

>

n=1,3,5,...

lan cos mmY,;' _ (an n?m? nrr  12G nﬂ'a;) Yn] _ _12G€'
w



We expand the right side in Fourier series for —w/2 < z < w/2 to obtain

12Ge B X 12Ge 4 n—1 nme

2 - Y (—1)= cos —. (3.23)

2
neiss,. 0onm w

Thus Y,,(y) satisfies the following ordinary differential equation

n’nm?  12G 12Ge 4 pe1
n_ Lo _ e 1yt
Y, < 2 + t2K) Y, v mran( 1)z, (3.24)
with
Yo(£€/2) =0 and (3.25)
Y!(0) = 0. (3.26)

The general solution of (3.24) is

1 12Ge 4 n—1
Y, (y) = ¢; sinh A, h Ay 4 — _1)%, 2
(y) = c1 sinh Ay + ¢o cos y—i—)\?21 v mran( )2 (3.27)

with 22 19
2\ = nm E—
w2 2K

n
Since the pressure is symmetric with respect to the z-axis, it follows that ¢; = 0. From (3.25)

we obtain that
1 12Ge 4 n—1 1

= — (- 1)"T _
A2 12 nma, ) cosh 2zt

2
We note that in this case (3.26) is also satisfied. Thus

12Ge & 4 n-1 cosh(A,y) nnx
P = —1)= — 3.28
t2 nzl%;&___ mr)\%( ) [ cosh(A,£/2) T (3:28)
with
32— n?m? N 12G
"ow? 2K
We integrate P over the metal plate to obtain
¢2 rw/2 24Ge & 4wl 8w Al
R= Pdady = = tanh 225, (3.29
27 e ) e 12 nzl%;&___ n?m2)2  n2miAd T (3:29)
This series converges rapidly and can be computed easily for different ratios of w/I.
Adding Fi and F; yields
F F+F 1 24Ge & 4wl 8w Al
i = — |Eefi(S — tanh — | . (3.30
AT 4 ~a|FEht n_§5,... iz~ gy o] - (330)




This result was compared to numerical simulations using linear finite element methods in
[1]. The half-width of the block (w/2) was kept constant at 0.0254 m (1.0 in) while the half
length (£/2) and the thickness ¢t were varied. The material was assumed to be linearly elastic
with Young’s modulus of 4.137 - 10° Pa, (600 psi) and a Poisson’s ratio of 0.4995 (slightly
compressible material). The theoretically and numerically predicted vertical force needed to
compress the rectangular blocks are depicted in Figure 3. Discrepancy between the finite
element results and theory is less than 10% which is very satisfying considering that both
methods are approximate.

Comparison of FEA results for F with theory for rectangular blocks

2500 T T T T T
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Figure 3: Comparison of FEA results for F' with theory for rectangular blocks

4 V-shaped blocks

In this section we derive the total axial force corresponding to a small vertical displacement ¢
for V-shaped blocks under different assumptions. V-shaped rubber blocks are used in rubber
springs to achieve particular combinations of stiffnesses in the three orthogonal directions.
They can be found for example in railway bogie suspensions. Our goal is to develop expres-
sions for the shape function to aid in the design of such blocks by predicting the stiffness
parameters.



4.1 Infinitely long V-shaped blocks

We start by analyzing the case of infinitely long Chevron-shaped blocks. We assume that
the length of the block is much larger than its width, thus we can neglect the displacements
at the two ends. We also assume in this derivation that the rubber is incompressible. The
cross-section of the V-shaped block is depicted in Figure 4. Since the block is symmetric,
we consider only one leg of the Chevron-shaped mount first.

Figure 4: Cross-section of the infinitely long V-shaped block

The vertical displacement, §, may be resolved into its components dsinf, which is normal
to the metal plate and causes compression in the rubber, and dcosf, which is tangential to
the metal plate and causes shear. We want to calculate the vertical force per unit length,
F,, on one leg of the chevron. This is given by

Fa:Fc+F5a

where F, and F are the contributions (per unit length) from the compression and shear
deformations respectively. First we consider compression, which is assumed to take place
in two stages as explained in the introduction. The force, Fj, associated with the simple,
homogeneous compression is in the form given by

Fi 4 _6sinf 4Gosinf
—_— = —E = s
A 3 t t

with the cross-sectional area A = w/2. Since incompressibility is assumed, we have E = 3G.

10



To compute F; we again use the analogy to Reynolds’ squeeze film theory. As we showed
in Section 2 the local hydrostatic pressure P sustaining the bulge profiles solves the ordinary
differential equation

oP _ 8Gknm
or 2’
where k,, is the maximal bulge (see Figure 2). The volume of the bulge is approximated
by V =~ %kmt, while the displaced volume per unit length is given by V' = zdsinf. Hence
km = %x& sin 6.
Thus,
oP  12Gxdsind
or t3 ’
P=0at o= j:%,

and the solution is

6Gosinf (w?
P = T(I—x).

The pressure acts on the metal plate and therefore the corresponding force per unit length,
F;, is obtained by integrating P along the plate
B - /W/2 6Gd sin 6 (w2 2) dr — G sin 9w3-
0

B \4 " 23

This implies that the compression force acting perpendicular to the metal plate is given by

4 §sinbw G sin Ow?
F = F+F=-F
N T

4 _§sinf w?
— g 142
§4m 5 (14 47).

and the axial component F, of the compression force F' is

4 _§sin’6 w?
F, = F'si = —-AF 1+—1.
sinf = 3 t < + 4t2>

To find the total axial force F, we also need to compute the vertical component of the shear
force induced by the tangential component of the displacement. The shear force can be
determined as

A
F = G 6c050’
t
and its contribution to the axial force is
A 29
F, = F,cosf = Gd%.

11



Thus the axial force on one leg of the V-shaped block is

GAdcos’0 4 _§sin?f w?
=F+F=——"—"1+_AF 1+ —
fa= it ke t T3 t ( 4t2> ’

which implies that the total axial force per unit length is

Gwécos?f 4 _ §sin’d w?
Fo=2F,= 22097, %p 1+—],
4 i 37T ( 42

since A = w/2. It is readily seen that this expression reduces to our result for the infinite
strip when 6 = 7 /2.

4.2 Finite V-shaped blocks

F,,0 y

Figure 5: Finite V-shaped block

As we did in the previous example, we consider only one leg of the finite V-shaped
block of length £. As before, the vertical displacement § induces compression and shear in
the rubber block. We first find the axial component of the compression force. Recall that
F = F| + F,, where F; comes from the homogeneous compression. We use the empirical
factor (2.1) proposed by Gent and Meinecke [3] to obtain

w/ <4 2 wl/4+t? )

Fi=Eosinbo |3~ 3w?/4+ (2/4 + 2t

12



F; is again derived by Reynolds’ theory. First we have that the pressure P satisfies the
following equation:

0*P 9*P G. .

w + 8—y2 = —12t—35 Sin 9, (431)
14

P=0 at ng, y:ii, (4.32)

dP

o =0at z=0. (4.33)

Let us denote the right side of (4.31) by M. Then this equation is analogous to the
torsion problem described in [7], and very similar to the compression of a finite rectangular
block. Thus we can use arguments similar to those in Section 3 to obtain a solution. The
boundary conditions at z = 4 and = = 0 are satisfied by looking for P in the form of a series

o0

pP= Z cos @Yn,
n=1,3,5,... w
where Y7, Y3, ... are functions of y only. We can argue as in Section 3 to find Y,, and P.
With routine calculations we thus obtain
12G 4 n-1 cosh(A,y) nnx
P——5 6 — (-1 [1 - ————— — 4.34
sinf 123:5 e (1) [ coshOmt/2)| w3
where \2 = 27’
£/2  pw/2
P = / Pdzdy
¢/2
12G > 4wl 8w Anl
= —5 6 — tanh ——
sin ne 1235 lnzﬂz)\% n2mw2 A3 Ty ]
Substituting A2 = ";’;2 and using the fact that 3°0° ;35 L= % we obtain
1 12w & 1 nml
Fy= —Gésinfuw®l [1 - —— — tanh —
27 943 Smow ( m £ n_1,23,5, n® an 2w )

This series converges rapidly and it can be computed easily for different ratios 7. For

example if w = ¢ (which is not a square cross section of one leg in our notation) we obtain
0.4217

= BT — = G sin fw.

For w/2 = ¢ (which is a square cross section of one leg in our notation) we find

0.1716 . ow?

F, = 573 Gésmﬁ;.

13



In the general case the compression force is given by

4 2 wlf4+?
3 3w?/4+ /4 + 28

¢
F = Fi+F= Edsinﬁgj—t (

1 192w & 1 nml
—Gésinfuwl |1 - ——— — tanh —
* gps 0 ST ( m L n:l,z3,5,... s w )
w’ 4 2  wl/4+t?
= E_—dsinf |- — -
ot O > (3 3w?/4+ )4+ 282
1, 12w & 1 nmd
— 1—-—— — tanh — | | .
* 32" ( w4 n:%:@_._ ns o o ))

The axial component of the compression force is F, = F'sin#f.
The shear force induced by the tangential component of the displacement is given by

_ Gwécost
2t
and its axial component is F; = F;cosf. Thus we can evaluate F, = F, + F for different

sized blocks. Again the total axial force, Fy = 2F},, reduces to our result for rectangular
blocks when 6 = 7 /2.

Fi

4.3 Extension to slightly compressible V-shaped blocks

In the above analysis we made the assumption that the rubber is incompressible. In reality
rubber is slightly compressible, with a large, but finite bulk modulus. The usual incompress-
ibility assumption stems from the fact that the shear modulus of the rubber is relatively low,
about a thousand times smaller than its bulk modulus. Thus rubber accommodates stresses
in a way such that the change in volume is negligible compared to its change in shape.

In this case we need to modify our results for the F5 component of the compression force.
The other forces are not affected by the bulk modulus. The equation we must solve in this
case is the following

o*P 9P G 12G

w 14
dP
P _at oo, (437)

where K is the bulk modulus of the rubber. Let us again denote the first term on the right
side of (4.35) by M. We can solve the equation in the same manner as we solved (4.31). The
boundary conditions at z = T and x = 0 are satisfied by seeking P in the form of a series:

o0
nmwx
P= Z COS T Yn y

n=1,3,5,...

14



where Y7, Y3, ... are functions of y only. Arguing as before we obtain that

12G 4 n—1 cosh A,y nmwx
P = —6 0 1)z |[1-
sin e 1235 mr)\%( ) [ cosh \, & ] €08
with
22— n?m? N 12G
"ow? 2K
To find F; we integrate P along the bonded plate
/2 pw/2
R — / Pdzdy
/2
12G 4wl 8w At
= —5 sin 6 1%:5 poC sl SERCY) tanhT

Once the force F3 is obtained the remaining analysis is the same as in the previous subsection
since the other forces are not affected by the bulk modulus and the assumption that the
rubber is slightly compressible.

4.4 Finite element analysis results

Linear finite element analysis was performed using ANSYS 5.6 to verify the theoretical
solution for the finite V-shaped block. 3D analysis was performed using Solid95 elements
with reduced integration. The material was assumed to be linearly elastic with Young’s
modulus of 4.137 - 10® Pa, (600 psi) and a Poisson’s ratio of 0.4995 (slightly compressible
material). To cover a reasonable range of shapes, the angle, § was fixed at 7/4 and 7/3.
The width w was kept at 0.0505 m, (2 in), while the thickness varied from 0.0031 to 0.0126
m, (0.125 to 0.5 in), and the length varied from 0.0126 to 0.203 m, (0.5 to 8 inches). A
y-displacement of 2.53990 - 10~° m, (0.001 in) was imposed on the top surface to simulate a
small compression §. Figures 6-7 show the comparison of the finite element and the theoretical
results for the vertical force needed to compress V-shaped blocks of different angles and sizes
by 0 in the slightly compressible case. There is a very good agreement between the two
results with a discrepancy of less than 10 %. This is quite satisfactory considering that both
methods are approximate. The largest discrepancy occured when the length ¢ was small and
the width ¢ was large. This is not surprising since in that case some of the assumptions of
the pressure method do not apply.
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Comparison of FEA results for Fa with theory for 8=174
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Figure 6: Comparison of FEA results for F, with theory for § = /4
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